With most bottling plant processes arranged on carousels, you need slip rings that can transmit power, electrical signal and various media to rotating platforms with speed, precision and reliability. At the same time, your slip rings must be able to support large amounts of data on fieldbus and Ethernet networks—giving your fast-paced bottling operation the edge in our digital age.

When it comes to meeting these demands, our slip rings have you covered. Let’s take a closer look at how our SR120, SR160 and SR250H series meet the requirements of today’s bottling plants:

Design Overview

Our SR120, SR160 and SR250H slip rings feature an innovative, three-chamber design that transmits power, signal and data in parallel. When combined with a media lead-through, they’re even capable of transferring liquids for rinsing purposes, as well as compressed air for blow molding.

Thanks to their innovative contact technology and shield design, slip rings—like our powerful SR250H—reliably transmit data rates up to 1 Gbps without interference. As a result, they support even the most precision-driven bottling tasks, such as labeling and milliliter-scale filling.

Other notable features include:

  • Modular design for greater installation flexibility
  • Electrical loads up to 80 A
  • Maintenance-free use
  • IP67 protection rating
  • Range of plug and cable connections
  • Rugged aluminum and stainless steel housing

A Slip Ring For Every Process Step

Thanks to their durable, high-quality design, our SR120, SR160 and SR250H slip rings are ideal for every step in your bottling operation, including:

  • Blow molding—finished PET bottles are manufactured from special plastic blanks. This step requires flexible slip rings that can handle high electrical loads. Our slip rings come with various mounting and connection options and support 80-A loads.
  • Cleaning and inspection—bottles are cleaned and checked for leaks and foreign matter, making component cleanliness a top priority. Our IP67-rated slip rings meet this step’s strict hygienic requirements.
  • Filling—the core process of every bottling plant. Our slip rings’ three-chamber design transmits power, signal and data with minimal interference—enhancing the speed and precision of this important step.
  • Capping—where bottles are capped and forwarded to the last process step. Our slip rings provide reliable power to individual sealing stations.
  • Labeling—pre-printed labels are affixed to bottles. Our slip rings supply reliable control data to labeling stations, meeting the speed and accuracy requirements of this step.

To learn more about how our slip rings can benefit your bottling operation, click here.


While safety PLCs are important for control systems, they’re not always necessary. For smaller operations, older machines and established control networks, in particular, the high costs associated with adding a safety PLC often outweigh the benefits. The good news is you can still have functional safety without one.Our Safety-M series provides a simple, easy solution to achieve safety levels up to SIL-3 PLe without a separate safety PLC. These standalone speed controllers offer many of the same benefits as larger safety systems—but at a fraction of the material and engineering costs.

Let’s take a closer look at this cost-effective, modular solution:

Safety Made Simple

The Safety-M series is a complete speed monitoring device housed in a compact package for installations with limited space. Suitable for a variety of applications, including workshop platforms, cranes and windmills, these devices integrate comprehensive speed- and position-related safety functions according to EN 61800-5-2, including:

  • Safe Torque Off (STO)
  • Safe Stop 1 (SS1)
  • Safe Stop 2 (SS2)
  • Safe Operating Stop (SOS)
  • Safely-Limited Speed (SLS)
  • Safe Direction (SDI)
  • Safe Speed Monitor (SSM)

When coupled with a SIL-certified encoder, the Safety-M series achieves functional safety levels up to SIL-3 PLe without a safety PLC. And unlike larger safety systems, these devices don’t require any complex programming: simply adjust your parameter using the removable operating and diagnostic display (OLED) or via the USB port and PC-based SafeConfig OS6.0 software.

Your Benefits at a Glance

In addition to its functional safety, compact size and easy parameterizing, the Safety-M series provides several advantages:

Easily integrate and retrofit. Thanks to its integrated signal splitter and safe inputs/outputs, you can easily integrate the Safety-M series into existing safety circuits. You can also retrofit it into older machines that would otherwise need costly modifications to meet Machinery Directive 2006/42/EC requirements.

Perform local diagnostics. With its status LED and removable OLED touch screen, each Safety-M module enables local diagnostics without additional PC software.

Save costs. Each Safety-M device is housed in a compact package—lowering your installation costs. Its integrated signal splitter for encoder signals also avoids expensive, complex external wiring. And best of all, the series doesn’t require any additional software or licenses. You can download the software for free off our website.

To learn more about our Safety-M speed monitoring series, visit our product page.

Learn More

Shaft copying systems typically rely on contactless magnetic or optical measuring technologies to detect elevator car position. But while the installation process for many of these systems is long and complex, installing our shaft copying system takes only a few minutes.

Here’s an overview of what you can expect:

Traditional Systems Rely On Sharp-edged, Fragile Code Tapes

Most absolute shaft copying systems feature magnetic or reflective light technology:

  • Magnetic systems include sensors that mount on the elevator car and read the magnetic tape mounted in the shaft.
  • Reflective light systems also utilize sensors and feature stainless-steel bands with a data-matrix code.

Both systems often require a long time to adjust the sensors to the bands, which have very sharp edges—making them dangerous to mount especially if you aren’t wearing gloves. These bands, particularly the code tapes in reflective light systems, are also fragile. Dropping them could easily damage the encoded data, leading to potentially dangerous and life-threatening conditions once installed.

These systems also require additional sensors and magnetic switches to work properly, driving up your overall costs, installation time and maintenance demands.

New Shaft Copying System Features Easy, Safe Installation

Our shaft copying system makes things easier. It comes with a mounting set consisting of two fastening angles, rolled-up stainless-steel tape and a spring element that applies pre-tension to the tape in the shaft pit. Simply mount the fastening angles directly on the elevator rail in the areas of the shaft head and pit. Next, suspend the encoded, stainless-steel tape at the shaft head via a simple snap hook, and then fasten it with the spring element in the shaft pit. Finally, lead the tape through the entirety of the sensor housing to ensure high reliability and functionality.

While other measurement systems feature fragile, sharp-edged bands and code tapes, our stainless-steel tape forgives any scratches or kinks during installation. It also features rounded edges for safe handling, making gloves optional.

To learn more about our shaft copying system, download our latest white paper.

Download The White Paper

Updated elevator safety standards have recently been put into effect for all passenger and cargo elevators to improve the safety of users, installers, inspection personnel and service technicians. As a result, elevator manufacturers face new, rigorous demands. Fortunately, there’s an easy way to improve the safety of your elevator without delay, using our SIL-certified absolute shaft copying system.

Let’s take a look at how this system meets the updated standards:

New Construction, Installation And Testing Requirements

Recently, two European safety standards—EN 81-20 and EN 81-50—came into effect for all elevator installations established after September 1st, 2017:

  • EN 81-20 stipulates the safety requirements for elevator construction and installation.
  • EN 81-50 outlines the test and examination requirements for certain elevator components.

Regulated by the European Committee for Standardization (CEN), these standards include new conditions for elevator movement, speed, strength, lighting, door locks—and more. For example, elevator cars must meet improved strength, durability and illumination requirements.

The easiest way for you to improve the safety of your elevator system is to integrate components that are already SIL-certified. The alternative would be to submit your own safety concept to the Technical Inspection Association (TÜV), which can delay getting your elevator up and running.

SIL-Certified Shaft Copying System

To make complying with these standards easier than ever, Kuebler’s Absolute Shaft Copying System comes in an optional safe variant that you can add quickly and easily to any existing safety concept. In the event of an error, the system activates safety functions that automatically bring the elevator to a safe operating state according to EN 81 standards. Other required safety functions include inspection operation switches (top and bottom) and an overspeed protection drive.

In addition to saving installation time and costs, using this Sil3\Ple-certified and TÜV-approved system ensures greater safety and user confidence.

To learn more about our absolute shaft copying system, download our latest white paper.

Download The White Paper

When it comes to elevators and safety, you can’t take any chances. Not only must elevators adhere to rigorous safety standards for passengers, installers and technicians, but they must also be able to arrive accurately at desired floors—achieving long-term reliability even after continuous use. The key technology that meets these demands is the shaft copying system, which traditionally relies on contactless magnetic or optical measuring technologies to detect elevator car position. But many of these systems have significant drawbacks, including difficult and complex installation requirements.

Let’s explore a new contactless linear measurement technology that not only advances the safety and accuracy requirements of the elevator industry, but also provides easy, safe and cost-effective installation.

The Challenges With Traditional Shaft Copying Systems

Most absolute shaft copying systems rely on magnetic or reflective light technology. Magnetic systems include sensors that mount on the elevator car and read the magnetic tape mounted in the shaft. Reflective light systems also utilize sensors and typically feature stainless-steel bands with a data-matrix code. Although both types of systems seem quick and easy to install, nothing could be further from the truth.

For one, installers often have to spend a long time adjusting the sensors to the bands, which typically have very sharp edges—making them incredibly dangerous to mount especially if the installer isn’t wearing gloves. These bands, particularly the code tapes found in reflective light systems, are also fragile. Dropping them could easily damage the encoded data, leading to potentially dangerous conditions once installed.

New Shaft Copying System Provides Absolute Contact Measurement

Kuebler’s absolute shaft copying system avoids the installation pitfalls of existing magnetic and optical technologies. Featuring transmitted light technology, our contactless linear measuring system mounts directly on the elevator car—ensuring permanent and slip-free positional measurement, as well as accurate transport to desired floors. Its benefits include:

Compact housing. The system, with dimensions of only 135 x 45 x 33 mm, is the most compact—and therefore versatile—absolute shaft copying system currently on the market. You can use it in tight installation spaces, as well as elevator retrofits, upgrades or new installations.

Easy, safe installation. Installing our shaft copying system takes only a few minutes. The system comes with a mounting set consisting of two fastening angles, rolled-up stainless-steel tape and a spring element that applies pre-tension to the tape in the shaft pit. Unlike other measurement systems, which feature fragile, sharp-edged bands and code tapes, our stainless-steel tape forgives any scratches or kinks during installation and features rounded edges for safe handling. In fact, installers don’t even have to wear gloves.

Cost-effectiveness. Because our shaft copying system mounts directly on the elevator car, it eliminates the need for additional sensors and magnetic switches. Having less components reduces overall system costs, as well as installation time and complexity.

To learn more about Kuebler’s absolute shaft copying system, watch our latest video.



Construction machinery, cranes and other types of mobile equipment require encoders with a unique set of technical requirements. Not only must encoders be able to thrive in harsh environments, but they should also feature an energy-harvesting electronic design that enables them to operate reliably—even in the event of a power failure.

An example of an encoder that fits this bill is our new Sendix M36. Let’s take a look at how its combination of electrical and mechanical features suits the demanding world of mobile equipment:

Rugged Bearing Construction Withstands Heavy-Duty Applications

Despite its compact, 36-mm size, the Sendix M36 multiturn encoder is sturdily constructed for tough environments. Its proprietary Safety-Lock™ design includes interlocked bearings, strengthened outer bearings and large bearing size relative to the size of the encoder. Thanks to these bearings and flexible mounting technology, this encoder can also tolerate large shaft loads and installation errors resulting from temperature expansion or vibration—making it a versatile choice for a wide range of heavy equipment motors.

In addition, the encoder’s high IP66, IP67 or IP69k protection levels ensure reliable outdoor operation even in the presence of dust or condensation. The Sendix M36 also resists high heat, which—when combined with high rotational speeds—makes it suitable for demanding, high-temperature environments up to 85°C.

Energy-Harvesting Tech Improves Encoder Reliability

Not only is the Sendix M36 ruggedly constructed; it is also efficient. For one, it integrates our unique Energy Harvesting Technology, which ensures the absolute position of the encoder will be stored even in the event of a power failure. The rotating magnetic field generates energy—eliminating the need for gears and batteries. In addition to enhancing the encoder’s compactness, longevity and reliability in the field, this energy-harvesting design is more cost-effective. Having less components also improves its magnetic insensitivity.

M36 encoders are available in variants that support various electrical interfaces, including programmable analog for greater versatility. Also in development for this series is a version that supports J1939, which is rapidly gaining traction in the transportation sector and enables real-time, closed-loop control functions between vehicle components in off-highway equipment.

To learn more about the Sendix M36 family of multiturn encoders, visit our product page.

Although the SAE J1939 standard is not new, it continues to grow in popularity. Used in on- and off-highway vehicles—from passenger cars to construction vehicles and agricultural machinery—SAE J1939 supports real-time, closed-loop control functions between vehicle components. In addition, it enables heavy-duty machine manufacturers to reap the benefits of the Internet of Things (IoT), which is rapidly gaining traction in the transportation sector.

Let’s take a closer look at this high-speed, IoT-friendly protocol:

A Higher-Layer Protocol Using CAN

Based on Controller Area Network (CAN), J1939 enables fast, real-time serial data communications between microprocessor systems—also called Electronic Control Units (ECUs)—in vehicles. A multi-master system, it enables decentralized network management without channel-based communication and supports up to 254 logical nodes and 30 physical ECUs per segment. Information is combined on four data pages in parameter groups (PGs), which are identified via a unique number (PGN) and support up to 8 data bytes.

If larger data quantities need to be transmitted, J1939 utilizes transport protocols:

  • Broadcast Announce Message (BAM). Data is transmitted via broadcast with no control data flow between the sender and receiver.
  • Connection Mode Data Transfer (CMDT), or peer to peer transfer. Data is exchanged between two ECUs, which use handshaking and message acknowledgements to guarantee successful data transfer.

As a higher-layer protocol that uses CAN as its physical layer, SAE J1939 supports message lengths up to 1,785 bytes. Other notable features include a maximum network length of 40 m and standard baud rate of 250 kbit/sec.

The Future of J1939

As the IoT continues to grow in off-highway applications, so too will J1939—whether it is the mapping of the J1939 application profile to the CAN FD data link layer to allow faster transmission rates, or the migration to TCP/IP over Ethernet so that real-time remote system management increases vehicle performance and efficiency.

Kuebler will continue to be a source of innovative products, providing solutions to our customers’ specific requirements, as well as a leader in position feedback for the mobile automation industries. Stay tuned for more developments from Kuebler featuring this technology!

To learn more, visit our webpage on mobile automation.

In our last few blog posts, we’ve been exploring various single-cable electrical interfaces for motor feedback encoders. Now, we turn to BiSS Line—an open-source iteration of the BiSS protocol that, like SCS open link, supports single-cable technology. Let’s take a closer look at some of its defining features and benefits:

What is BiSS Line? A real-time digital interface for sensors, inverters and drives, BiSS Line transmits 8B10B-encoded data using 2- or 4-wire technology at a transmission speed of 12.5 MBaud. Like SCS open link, BiSS Line utilizes the RS485 transmission standard and is certified up to SIL3.

When do you use BiSS Line? This interface is typically used in industrial or robotic applications requiring short cycle times and safe, flexible data transmission. Typical applications include motor feedback systems, as well as rotary and linear encoders with a 2- or 4-wire interface.

What are its unique design features? BiSS Line integrates a bus structure for multiple slaves and also implements forward error correction (FEC), which enhances data reliability in the presence of faulty cables and connectors, as well as over noisy communication channels. It is fully compatible with existing single-cable infrastructure, including transmission technology, cables and connectors, as well as BiSS and BiSS Safety protocols.

What are its advantages? Thanks to its single-cable design, BiSS Line reduces the number of wires in your system, leading to significant cost and energy savings and reducing the chances of connector failures. Because it transmits power and encoder signal across one cable, you also don’t have to worry about finding space for additional connectors on smaller, space-constrained motors. And finally, because BiSS Line is an open-source interface, you don’t have to worry about licensing fees.

To learn more about BiSS Line, visit our BiSS webpage.

To meet the demands of digital drive controllers in today’s smarter, more automated factories, electrical interfaces have had to evolve. RS485 and SinCos, for example, are two classical interfaces that together make up RS485 + SinCos—a hybrid protocol that provides the benefits of both incremental and absolute encoders.

But as single-cable technology continues to gain traction in the world of motion control, RS485 + SinCos has had to change to keep pace. Here’s an overview of this evolution:

What is RS485 + SinCos? To meet the requirements of digital drive controllers, RS485 + SinCos combines incremental and absolute encoders and features the advantages of both types—permitting one electrical interface for both low-end and high-end applications.

What are its technical features? A hybrid interface, RS485 + SinCos consists of an analog process channel on which sine and cosine signals are transmitted differentially with almost no delay, as well as a bidirectional parameter channel that transmits absolute position information according to the RS485 standard. RS485 + SinCos is HIPERFACE®-compatible.

What are its benefits? Because it utilizes the RS485 transmission standard, you can use RS485 + SinCos over long distances up to 100 m and in electrically noisy environments, making it useful in industrial control systems. Not only that, but the use of sin and cosine signals, available for speed control, provides high resolution at low speeds and efficient signal bandwidth at high speeds.

How has it evolved? More and more, today’s industrial and robotic systems demand electrical interfaces that can support high-performing data exchange between the rotary or linear motor feedback encoder and drive controller. That’s where BiSS Line comes in. This interface is built on the same physical platform as RS485 + SinCos but utilizes single-cable technology—making it a compelling choice for today’s servo-driven systems.

You can learn more about BiSS Line in our next blog post. In the meantime, visit our Motor Feedback Systems product page to learn more about the benefits of single-cable technology.

In our previous blog, we explored what SCS open link is and how well it fits with advancing drive systems. This fully digital, single-cable protocol provides the servo-motor market with a much-needed nonproprietary standard—creating greater flexibility when it comes to encoder selection. But the advantages don’t end there.

Let’s take a closer look at how SCS open link benefits end-users, as well as drive and machine manufacturers:

Flexible installation for end-users. SCS open link supports two- and four-wire applications, reducing the number of connectors and making installation fast and easy. For one, this design saves on material costs and the labor required to get things up and running. It also reduces installation space, which comes in handy in tight spaces. And finally, less components ultimately means less weight, which boosts the energy efficiency of your system.

A fast, reliable interface for drive manufacturers. SCS open link features fast transmission rates up to 10 MBaud and short controller cycles up to 32 KHz—opening even more application possibilities for manufacturers. Because it utilizes RS-485 as its transmission standard, you can use it reliably over distances up to 100 m and in electrically noisy applications, such as industrial control systems. It is also downward compatible, allowing seamless interoperability with legacy systems.

Future-ready technology for machine manufacturers. SCS open link helps you keep up with the demands of Industry 4.0 and the developing Industrial Internet of Things (IIoT). It lets you connect additional secondary sensors, for example, as well as add condition monitoring capabilities to your drive system. Its single-cable design also saves on space—a compelling advantage as the industry shifts toward developing and deploying smaller drive systems.

To learn more about SCS open link and single-cable solution, visit our SCS solutions page.